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ABSTRACT

A forced oscillation problem for a Hamiltonian equation on a torus is

studied. If the dimension of the torus is equal to 2n, and if the period of

the time dependent Hamiltonian equation is equal to 1, it has been shown in

--ii, that there are at least (2n+1) periodic solutions having period 1. In

this paper it is shown, that, under an additional, necessary nondegeneracy

condition such an equation possesses a periodic solution having minimal

period T, for every sufficiently large prime number T. The proof uses the

classical variational approach. It is based on the Morse theory for periodic

solutions developed in [5] which relates the winding number of a periodic

solution to its Morse index and on an iteration formula for the winding

number.
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SIGNIFICANCE AND EXPLANATION

This report is an addition to a previous one concerning periodic

solutions of Hamiltonian systems on a torus. In an even earlier work, an

analogue of Morsels theorem relating 'conjugate points' on a closed geodesic

to the 'index' of the geodesic as a critical point of a functional was proved

in the Hamiltonian setting (where the functional is infinitely indefinite and

there Is no index in Morse's sense).

In this report this analogue of Morse's result is used to find infinitely

many periodic solutions on the torus provided they are all linearly non-

degenerate. Such theorems all have the aim of understanding the basic action

principles of physics.

te

* The responsibility for the wording and views expressed in this descriptive
* summary lies with NW, and not with the authors of this report.



NOTE ON SUBHARMIONIC SOLUTIONS OF A
HAMILTONIAN VECTOR FIELD

C. Conley and E. Zehnder

1. Introduction:

We consider on a torus T2n ,2n/,2n n ' 2, an exact Hamiltonian

vectorfield, which depends periodically on time t. Assuming its period to be

equal to 1, the vectorfield is, on the universal cover, given by

(1) xJVh(t,x), x e R2 n

where h e C2 ( X R 2n) is periodic in all its variables of period 1. One

may ask for forced oscillations, i.e. for periodic solutions having the period

of the given system. In fact, recently it has been proved in [6] (see also

N. Chaperon [3]) that the Hamiltonian vectorfield (1) possesses at least

(2n+1) periodic solutions of period 1. This has been conjectured by

V. I. Arnold in [1), (2]. Such a periodic solution is also a periodic

solution of period n e , n > 1, x(t) - x(t+n)i the period is however not

minimal. It is our aim to find solutions having integers n > 1 as their

minimal periods, such solutions are called subharmonic solutions. Tb find

such solutions further assumptions on the vectorfield are required, as the

example h S 0 shows.

If x(t) - x(t+T), T e N is a T-periodic solution, the linearized

equation along x(t) is given by

(2) y JS(t)y , S(t) hX (t,X(t))

with S(t+T) - S(t) being symetric. The fundamental solution X(t)

satisfies

(3) X(t) - JS(t)X(t), X(0) - 1

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



The eigenvalues of P - X(T), T being the period of x(t), are called the

Ploguet-multipliers of x(t).

Definition: A T-periodic solution x(t) is called non degenerate, if 1 is

not an eigenvalue of P - X(T).

This definition requires, that the linearized equation (2) admits no

nontrivial T-periodic solution. In the following we shall prove that there

are infinitely many subharmonic solutions provided all the periodic solutions

with integer periods are nondegenerate.

Theorem 1.

Assume that all the periodic solutions of the Hamiltonian system (1)

having integer periods are non-degenerate. Then there is a sequence (n k  of

inteers with lim nk = as k + o, such that for every k there are at

least 2 periodic solutions having nk as minimal period.

We point out that the loops of all these periodic solutions are

2ncontractible on T . Theorem I will follow from a more general statement

(Theorem 2 below) whose formulation requires some explanation.
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2. A Formula for the Iterated Index

First we recall the index of a nondegenerate periodic orbit as intro-

duced in [5]. Let W - Sp(n,R) and let W - {E W / I ' O(x)). if m e w

there is a unique polar-decomposition N - So with B and 0 belonging to

W and S being positive symmetric and 0 orthogonal. Hence

0 w) with u - u I + iu2 e U(n)

Here, U(n) is the group of unitary matrices over C. Since Idet ul - 1

there is a homomorphism O u * det u e s . If y(t), t0 4 t 4 t1, is an

arc in W there is an associated arc u(t) e U(n). We pick a continuous

function

A(t) e R with det u(t) - exp(i A(t)). Then A(M) :- A(tI) - A(t 0 ) depends

only on Y. If Y(tt0) - ¥(t 1 ) then A(y) - 2wm, m e Z and the loop y is

contractible in W if and only if A(y) - 0.

Consider now a nondegenerate T-periodic solution x(t). Its fundamental

solution X(t) -: Y(t) according to (3), 0 ( t C T is an arc in W

satisfying Y(0) - id and y(T) - P e W . The rotation number of x(t) will

be denoted by A(y). Now W has two components each of which is simply

connected relative to W. One component contains the matrix Y+ - -id having

degree (+I). The other component contains the matrix

2

(: -0

with I being the identity matrix in (n-1)-dimensions. Y_ has degree

(-I). We therefore can continue the arc y by an arc y from y(T) - P e w

to either Y+ or Y-. AM) depends only on P and we shall write

A(r) - r(P). It can be shown, (5), that 0 C Ir(P)I ( wn and r(P) - 0 if
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P is hyperbolic. Now A(Y U Y) A(Y) + A( ) is an integer multiple of v

and we define the index of the nondegenerate periodic solution x(t) to be

the integer

1
J(x) =;(A(Y) + r(P)) e z

If x(t) - x(t+T) is a T-periodic solution we denote the I-times iterated

loop x(t) - x(t+IT) by x . If it also is nondegenerate, it has an index

j(x ), namely

J(x )  (W(y . ) + r(Pl) ,

where Y (t) - X(t), 0 4 t 4 IT and PI - X(IT) - X(T)I. The following

formula then holds true:

Proposition.

Assume the periodic solution x and all its itera s xI are

nondegenerate. Then for all I ) 1:

(i) J(x ) - ; (ZA(y) + r(P )) with 0 ( Ir(P )I ( wn.

(ii) If P is hyperbolic, then:

J(x)=t J(x)

As an immediate consequence we have

Corollary. For £
I £

i ) j(x ) - A(y)I < n

(ii) Either lim Ij(xit )I + - (in case Ay) 0 0) or IJ(x )I < n
L.a

for all £ ; 1 (in case AY) - 0).

Proof.

To show Ay ) IA(y). Recall that X(t+IT) - X(t)P 1 0 4 t 4 T. Now

AY I) - ) + MY 2 A( I ), when

k-i
Yk(t) - X(t)P - , 0 C t 4 T

Consider the polar decompositions Pk-' e A. 0 and X(t) - e A(t)O(t), and

define the deformation 6 of Yk by

-4-
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t) - s (t)ot)esA 0 0 s 1

with 0 4 t 4 T. From the diagram

t-0 t-T
8-I 1

7- 1 :b 2

8=0 - 0

where 81(t) - Yk(t) and 8 (t) O(t)O, 0 C t 4 T, we conclude that
A A

&(61  Y2 (-60) (-Y1)) - 0, since the loop is contractible in W. Since

A(y ) = A(¥2 ) - 0 we conclude A(6I) - A60) - A(O(t)O) which is equal to

A(O(t)) - A(Y). Hence A(yk) M() and the claim follows.

After these preliminary remarks we can formulate the result of this note.

Theorem 2

If the 1-periodic solutions of (1) are nondegenerate then there are at

least 22n of them. Assume that also the iterates of the 1-Inriodic

solutions are nondegenerate, then there is an integer N0 > 0 such that:

i) for every prime T ) N there is a periodic solution of (1) having

minimal period Ty

(ii) moreover, if the T-Beriodic solutions are nondegenerate, then there

are at least 2 periodic solutions having minimal period Ti

(iii) if, in addition, for all the 1-eriodic solutions x - x(t):
1

lim IJ(x) A(x) # 0

then there are at least 22n periodic solutions having minimal period T.

All the periodic solutions found are contractible loops on T2 n.

The proof is based on the Morse theory for periodic solutions of a time

dependent Hamiltonian system as introduced in [5].



3. Morse theory for forced oscillations.

We make use of the classical variational principles for periodic

solutions: Let T > 0 be an integer, then a T-periodic solution of (1),

which is contractible on T2n is a critical point of the functional

f(x) - (_I <x,Jx> - h(t,x(t))}dt
02

which is defined on the T-periodic functions x : [0,T] + R 2n  Since

h C 2(SI x T 2n), the problem of finding critical points of f can be

reduced to the problem of finding critical points of a related function, g,

which is defined on the finite dimensional manifold T2n x R2N  for some

large N (which depends on the chosen period T). This reduction is carried

out in [6] by means of a global Lyapunov-Schmidt reduction. The required T-

periodic solutions are now in one-to-one correspondence to the rest points of

the gradient flow
d2 2N

(4) d Z W Vg(z), z e T2n x R

More precisely this equation can be written as follows, with

z - (y) e T x N2 .

yTo vo(z)

C AE + vlCz)

where v0  and v e C I(T2n x R 2N ) are uniformly bounded. Moreover,

A e ( 2N ) has an invariant splitting E+ * E_ = 2 N  such that for
(l[ l[_)• g+ -z

(4 e zex

A = A-t

with

<A+E[+,i+> ;0 a 1&+1 2

2w 2
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It follows that there is a constant R > 0 such that

d 2
da + +

d - - -1 if (E1 R

Therefore the set S of bounded solutions of (4) is contained in the compact

set B,

B T T2n D D

where D1 W( e I I+ 1 4R) and D2 {E_ e R I R1. moreover
B T2n + T2n

B- : Tx 3D X D2  is the (strict) exit set of B and B - T x DI x 3D2

is the (strict) exit set of B for the time reverse flow. We conclude that

B is an isolating neighborhood and that the pair (B,B-) is an index pair

for the set S of bounded solutions in the sense of [4].

T 2
n

The index of S, h(S), is the homotopy type [(B/B,*)]. The algebraic

invariants of S are given by the Poincare-polynomial:

2n

(5) P(t) :- p)(t,h(S)} = p(tjB#B-} = I ( in) t N+J•

j=0

which represents the cohomology of the torus T2n. If there are only finitely

many rest points of the flow, zk, 1 4 k 4 m, these rest points constitute a

Morse-decomposition of the invariant set S. The algebraic invariants

p(t,h({z 1)) are related to those of S by the following Morse equation

m
(6) 1 p(t,h(zk)) -P(t) + (1+t)Q(t)

k-1
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with a formal power series Q having nonnegative integer coefficients (e.g.,

see [5]). If the T-periodic solution xk(t) which corresponds to the rest

point zk  is nondegenerate, then the polynomial p(th(zk)) is easily

computed:

Lemma (E5], Lemma 2.6)

Assume x(t) - x(t+T) is nondegenerate and denote its index by J. Then

the corresgnding critical gint z of g is an isolated invariant set with

index h(z) - [ i , i.e. the homotopy typ of a Iointed sPhere of dimension

m - N+n-J, so that

tN+-p(t,h({&})) - ts~ -

Consequently, if all the T-periodic solutions of (1) are nondegenerate tere

are only finitely many of them, x i,...,x having indices t""".'Jm - he

equation (6) becomes

m N+n-k
(7) 1 t k P(t) + (1+t)Q(t)

k-i

2n
with P(t) as in (5). In particular m ) 2 . The periods may however not

be minimal. We shall make use of the proposition in order to estimate the

contribution of the iterates of the 1-periodic solutions in equation (7).

I I I I i II III I I I I .-..-



4. Proof of theorem 2.

Assume that the 1-periodic solutions of (1) are nondegenerate. There are

finitely many of them, Xl,...,Xm and we denote their indices by

i(xk) = (A(x k ) + r(Pk))

Assume now, in addition, that the iterates of the I-periodic solutions are

nondegenerate. We conclude by the proposition that if A(xk) 0 0, then the

index of the iterated periodic solution increases as Ij(x)I + = as

L + -. On the other hand, if A(xs) - 0 we have Ij(x )I < n for all
8 5

I) 1. Therefore there is an integer N0 > 0 such that for every I ) N0

and for all 1-periodic solutions we have:

J( 1)1 > n if A(x k ) $0
Iixk)

lj(xl)l < n if A(x) - 0

Let T > N be prime and assume there are only finitely many T-periodic
0

solutions, which then constitute a Morse-decomposition of S. By the Lemma we

then have the Morse equation

m N+n- Jk r
t + I p(t,h(z )) P(t) + (i+t) (t)

where the first sum is the contribution of the T-times iterated I-periodic

solutions with indices Jk V J(), 1 4 k 4 m. Since liki # n for every

k, then iterated periodic solutions do not represent any cohomology of the

torus T2n in dimension zero and in dimension 2n. Therefore the second

term, representing the contribution of the periodic solutions having T as

minimal period, is not vanishing. We therefore have at least one critical

point, zs, which corresponds to a periodic solution with minimal period

T. If all the T-period solutions are nondegenerate, then by the Lemma we must

have r ) 2 in order to represent the lowest and highest cohomology of

-9-



2nT . That is there are at least two critical points which correspond to

periodic solutions with minimal period T. Finally in case I~I> n for

1 4 h < m we conclude r > 2 2nas claimed in the theorem. This finishes

the proof of theorem 2.



REFERENCES

(11 V. I. Arnold: "Mathematical methods of Classi;al Mechanics" (Appendix

9), Springer 1978.

[21 V. I. Arnold: Proceedings of Symposia in Pure Mathematics, Vol. XXVIII

A.M.S. (1976) p. 66.

[3] M. Chameron: "Quelques questions de geometrie symplectique" Seminaire

BOURBAKI 1982/83, 610.

(4) C.C. Conlex: "Isolated invariant sets and the Morse index" CBMS,

Regional Conf. Series in Math. 38 (1978).

[51 C. C. ConleX and E. Zehnder: "Morse type index theory for flows and

periodic solutions for Hamiltonian equations" to be published in Comm.

Pure and Appl. Math.

[6) C. C. Conley and E. Zehnder: "The Birkhoff-Lewis fixed point theorem and

a conjecture of V. I. Arnold". To be published in Inventiones in Math.

cc/EZ/Jvs

-11-



SlCuRITY CLASSIFICATION OF THIS PAGE (MOM Dae DaIt4*04

REPORT DOOUMENTATION PAGE BEFORE CMPLTNGORM
I. REPORT NUMBER.GT ION No. RECIPIENT*S CATALOG NUMBER

#2570

4. TITLE (mmd SU•1e) S. TYPE OF REPORT & PERIOD COVERED

Summary Report - no specific
Note on Subharmonic Solutions of a reporting period
Hamiltonian Vector Field . PERFORMING ORG. REPORT NUMNER

7. AUTHORW') S. CONTRACT OR GRANT HUMER(s)

C. Conley and E. Zehnder DAAG29-80-C-0041

9. PERFORMING ORGNIZATION NAME AND ADDRISS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Mathematics Research Center, University of rk Unit Number 1 -
610 Walnut Street Wisconsin Applied Analysis
Madison, Wisconsin 53706
11. CONTROLHOG OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office September 1983
P.O. Box 12211 1s. NUMUER OF PAGES

Research Triangle Park, North Carolina 27709 11
14. MONITORING aGENCY NAME a ADOREWSlI dffrtet hom Cmdtblltad Offioe) 1S. SECURITY CLASS. (of thia rpoft)

UNCLASSIFIED
lS. DECL ASSI FI CATI ON/DOWNGRADING

SCHEDULE

1•. OISTRIBUTION STATEMENT (of 1i R.ihp)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of th ebstact entered In Block 0, Ii diftenmt from Report)

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Contnue an revee aide it Nse..ein aOW idant b loek mfber)

Hamiltonian systems, periodic solutions, variational principles, Morse-type
index theory, winding number of a periodic solution.

20. ABSTRACT (Conthum an rever.e vad Id noeoe. . i |denU by block nmbm,)

A forced oscillation problem for a Hamiltonian equation on a torus is
studied. If the dimension of the torus is equal to 2n, and if the period of
the time dependent Hamiltonian equation is equal to 1, it has been shown in
16], that there are at least (2n+l) periodic solutions having period 1. In
this paper it is shown, that, under an additional, necessary nondegeneracy
condition such an equation possesses a periodic solution having minimal
period T, for every sufficiently large prime number T. The proof uses the
classical variational approach. It is based on the orse theory for periodic

DO iFAH7s 1473 ElTION OF I NOV 6515 OBSOLETE UNCLASSIFIED
ewf,,mgIy-1v ftI ltVSC.ATIMlS nlF THIS PAGE (rfte Dae Ef Uto



ABSTRACT (continued)

solutions developed in 15] which relates the winding number of a periodic
solution to its Morse index and on an iteration formula for the winding
number.


